“函數(shù)f(x)是單調(diào)函數(shù)”為“函數(shù)f(x)存在反函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件
∵函數(shù)f(x)是單調(diào)函數(shù)?函數(shù)f(x)存在反函數(shù),
∴函數(shù)f(x)存在反函數(shù)推不出函數(shù)f(x)是單調(diào)函數(shù).
∴“函數(shù)f(x)是單調(diào)函數(shù)”為“函數(shù)f(x)存在反函數(shù)”的充分而不必要條件.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=lg
x2+1|x|
(x≠0,x∈R)
,有下列結(jié)論:
①函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
②在區(qū)間(-∞,0)上,函數(shù)y=f(x)是單調(diào)遞減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(0,1)上,函數(shù)f(x)是單調(diào)遞減函數(shù),其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)y=f(x),若有常數(shù)M,使得對任意的x1∈D,存在唯一的x2∈D滿足等式
f(x1)+f(x2)2
=M
,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請說明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域為區(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達式;
(2)若a,b,c滿足b2-3ac<0,求證:函數(shù)f(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[1,4]上的函數(shù)f(x)=x2-2bx+5
(Ⅰ)b=2時,求函數(shù)的最值;
(Ⅱ)若函數(shù)f(x)是單調(diào)函數(shù),求b的取值范圍.
(III)若函數(shù)f(x)不是單調(diào)函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a、b、c、d是實數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達式;
(2)若a、b、c滿足b2<3ac,求證:函數(shù)f(x)是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案