已知,且,求的最小值.某同學(xué)做如下解答:

  因?yàn)?,所以┄①,┄②,

  ①②得 ,所以 的最小值為24.

判斷該同學(xué)解答是否正確,若不正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)正確的最小值;若正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)取得最小值時(shí)的值.                    .

 

【答案】

【解析】

試題分析:本題考查基本不等式的應(yīng)用,注意應(yīng)用基本不等式求最大(。┲禃r(shí)的條件:“一正”,“二定”,“三相等”.表面上看,本題不等式的推理過(guò)程沒(méi)有錯(cuò)誤,但仔細(xì)觀察,應(yīng)該能發(fā)現(xiàn)①式等號(hào)成立的條件是,②式等號(hào)成立的條件是,兩式中等號(hào)成立的條件不相同,因此最后的最小值24是不能取得的,正確的方法應(yīng)該是,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,故最小值為25.

考點(diǎn):基本不等式的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆哈三中高三下學(xué)期第二次模擬考試數(shù)學(xué)理卷 題型:解答題

已知,且,求的最小值及取得最小值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,且,求的最小值.某同學(xué)做如下解答:

因?yàn)?,所以┄①,┄②,

②得 ,所以 的最小值為24.

判斷該同學(xué)解答是否正確,若不正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)正確的最小值;若正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)取得最小值時(shí)的值.                    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,且,求的最小值.某同學(xué)做如下解答:

  因?yàn)?,所以┄①,┄②,

  ①②得 ,所以 的最小值為24.

判斷該同學(xué)解答是否正確,若不正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)正確的最小值;若正確,請(qǐng)?jiān)谝韵驴崭駜?nèi)填寫(xiě)取得最小值時(shí)、的值.                    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月高考三輪模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

(I)試證明柯西不等式:

(II)已知,且,求的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案