已知函數(shù)f(x)=ln(ex+a)(e為常數(shù))是R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).

(Ⅰ)求a的值;

(Ⅱ)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍;

(Ⅲ)討論關(guān)于x的方程的根的個數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

為加強大學(xué)生實踐、創(chuàng)新能力和團(tuán)隊精神的培養(yǎng),促進(jìn)高等教育教學(xué)改革,教育部門主辦了全國大學(xué)生智能汽車競賽.該競賽分為預(yù)賽和決賽兩個階段,參加決賽的隊伍按照抽簽方式?jīng)Q定出場順序,通過預(yù)賽,選拔出甲、乙等五支隊伍參加決賽.

(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;

(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

函數(shù)f(x)=2sin(ωx+φ)的圖像,其部分圖像如圖所示,則f(0)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知x,y滿足且目標(biāo)函數(shù)z=2x+y的最大值為7,最小值為1,則

[  ]

A.

2

B.

1

C.

-1

D.

-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為

(Ⅰ)求ω的值;

(Ⅱ)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,求此時f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為

[  ]

A.

3

B.

-6

C.

10

D.

-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

若實數(shù)t滿足f(t)=-t,則稱t是函數(shù)f(x)的一個次不動點.設(shè)函數(shù)f(x)=lnx與函數(shù)g(x)=ex(其中e為自然對數(shù)的底數(shù))的所有次不動點之和為m,則

[  ]

A.

m<0

B.

m=0

C.

0<m<1

D.

m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知函數(shù)f(x)=x2+|x|-2,則滿足f(2x-1)<f()的實數(shù)x的取值范圍是

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

定義在R上的函數(shù)f(x)滿足下列三個條件:①對任意的x1,x2∈(-∞,0}(x1≠x2),恒為正值;②f(-x)+f(x)=0;③f(x+y)=f(x)+f(y).則函數(shù)f(x)只可以是

[  ]

A.

f(x)=2x

B.

C.

f(x)=3|x|

D.

f(x)=x

查看答案和解析>>

同步練習(xí)冊答案