如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點。

(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

(1)詳見解析,(2)

解析試題分析:(1)證明線線垂直,有兩個思路,一是在平面幾何中利用勾股定理,二是利用線面垂直轉化.而異面直線垂直只能利用線面垂直轉化.因為AC⊥BD,所以證明思路為證明BD⊥面ACE,而關鍵CC1⊥BD就可得到證明.(2)求點A到平面BDE的距離也有兩個思路,一是作出A到平面BDE的距離,即垂線段,二是利用體積求高.本題作出A到平面BDE較為復雜,所以優(yōu)先考慮利用體積求高.因為,所以
試題解析:(1)連結AC
ABCD-A1B1C1D1是正方體,AC⊥BD,CC1⊥ABCD
BD面ABCD,CC1⊥BD
ACC1C=C,BD⊥面ACE
AE面ACE,BD⊥AE
(2)設A到面BDE的距離為h
正方體的棱長為2,E為C1C中點,


考點:線線垂直判定,等體積求點到平面距離

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五面體中,四邊形是邊長為的正方形,平面,,,,.

(1)求證:平面;
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點.

⑴求證:平面PAD⊥面PBD;
⑵當Q在什么位置時,PA∥平面QBD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在斜三棱柱中,側面⊥底面,側棱與底面成60°的角,.底面是邊長為2的正三角形,其重心為點,是線段上一點,且.
 
(1)求證://側面;
(2)求平面與底面所成銳二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱的底面是邊長為2的正三角形,且側棱垂直于底面,側棱長是,D是AC的中點。

(1)求證:平面;
(2)求二面角的大;
(3)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,側面為菱形, 且,的中點.

(1)求證:平面平面;
(2)求證:∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,D、E分別是BC和的中點,已知AB=AC=AA1=4,ÐBAC=90°.

(1)求證:⊥平面;
(2)求二面角的余弦值;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐PABCD中,底面ABCD是正方形,側面PAD⊥底面ABCD,且PA=PD= AD.若E、F分別為PC、BD的中點,求證:

(1)EF∥平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

同步練習冊答案