設Sn是等比數(shù)列{an}的前n項和,且32a2+a7=0,則
S5
S2
=( 。
A、11B、5C、-8D、-11
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由已知32a2+a7=0求得等比數(shù)列的公比,然后由等比數(shù)列的前n項和求得
S5
S2
的值.
解答: 解:∵數(shù)列{an}為等比數(shù)列,且32a2+a7=0,得
a7
a2
=-32
,
a2q5
a2
=-32
,q5=-32,即q=-2.
S5
S2
=
1-q5
1-q2
=
1-(-2)5
1-(-2)2
=
33
-3
=-11

故選:D.
點評:本題考查了等比數(shù)列的通項公式,考查了等比數(shù)列的前n項和,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a=3 
1
2
,b=log3
1
2
,c=log 
1
3
1
2
,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB為圓O的直徑,C為圓O上一點,連接AC并延長使AC=CP,連接PB并延長交圓O于點D,過點P作圓O的切線,切點為E.
(1)證明:AB•DP=EP2;
(2)若AB=2
5
,EP=4
2
,求BC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

填空:(說明:最右一列三個括號填寫每個步驟用到的邏輯運算律)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列,且a1a2013=4,則由bn=log2an,所得數(shù)列{bn}的前2013項和為( 。
A、1
B、2
C、
2013
2
D、2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,求:
(1)三棱錐C1-A1B1B的體積;
(2)異面直線A1B與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,點(n,
Sn
n
)(n∈N*)均在直線y=x+
1
2
上.
(1)求數(shù)列{an}的通項公式;
(2)bn=3 an+
1
2
,Tn數(shù)列{bn}的前n項和,試求Tn
(3)Cn=anbn,Rn是數(shù)列{Cn}的前n項和,試求Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,點P是雙曲線右支上 點,O為坐標原點,若|PF2|:|PO|:|PF1|=1:2:4,則雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二項展開式(2x-
1
x
n的各項系數(shù)的絕對值之和為729,則展開式中的常數(shù)項是( 。
A、60B、45C、35D、30

查看答案和解析>>

同步練習冊答案