20.已知復(fù)數(shù)z1=3+i,z2=4+3i
(1)寫出Z1的共軛復(fù)數(shù),并求它的模
(2)求Z1•Z2的值.

分析 (1)Z1的共軛復(fù)數(shù)$\overline{{Z}_{1}}$=3-i,利用復(fù)數(shù)的模的計算公式可得$|\overline{{z}_{1}}|$.
(2)利用復(fù)數(shù)的運算法則即可得出.

解答 解:(1)Z1的共軛復(fù)數(shù)$\overline{{Z}_{1}}$=3-i,$|\overline{{z}_{1}}|$=$\sqrt{{3}^{2}+(-1)^{2}}$=$\sqrt{10}$.
(2)Z1•Z2=(3+i)(4+3i)=12-3+13i=9+13i.

點評 本題考查了復(fù)數(shù)的運算法則、模的計算公式、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,正方形ABCD的邊長為2,動點P從ABCD頂點A開始,順次經(jīng)B,C,D繞邊界一周,當x表示點P的行程,f(x)表示線段PA之長時,求f(x)的解析式,并求f(3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a9=(  )
A.20B.21C.31D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sinx-3cosx=$\sqrt{5}$,則tanx=( 。
A.-2或$\frac{1}{2}$B.2或-$\frac{1}{2}$C.2或$\frac{1}{2}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題正確的是( 。
A.單位向量都相等
B.長度相等且方向相反的兩個向量不一定是共線向量
C.若$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$>$|{\overrightarrow b}|$且$\overrightarrow a$與$\overrightarrow b$同向,則$\overrightarrow a$>$\overrightarrow b$
D.對于任意向量$\overrightarrow a$,$\overrightarrow b$,必有$|{\overrightarrow a+\overrightarrow b}|$≤$|{\overrightarrow a}|$+$|{\overrightarrow b}|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.證明函數(shù)f(x)=3x+2在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面為等腰梯形,AB∥DC,AB=2AD,若PA⊥平面ABCD,∠ABC=60°
(1)求證:平面PAC⊥平面PBC;
(2)若PA=AB,求平面PBC與平面PAD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤1}\\{x≤y}\end{array}\right.$,則z=2x+y的最大值(  )
A.1B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直角坐標系xOy中,橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點分別為F1,F(xiàn)2,左、右、上、下四個頂點分別為A,C,B,D,四邊形F1BF2D的面積與四邊形ABCD的面積的比值為$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓E的離心率;
(2)設(shè)橢圓E的焦距為$2\sqrt{2}$,直線l與橢圓E交于P,Q兩點,且OP⊥OQ,求證:直線l恒與一定圓相切,并求出該圓的方程.

查看答案和解析>>

同步練習(xí)冊答案