已知直三棱柱ABC-A1B1C1中,AA1=6,AB=4,BC=2,∠ABC=60°,若該三棱柱的所有頂點(diǎn)都在球O的球面上,則球O的表面積為
 
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由余弦定理可得AC,利用正弦定理求出△ABC的外接圓的半徑,利用勾股定理求出球O的半徑,即可求出球O的表面積.
解答: 解:∵AB=4,BC=2,∠ABC=60°,
∴由余弦定理可得AC=
16+4-2×4×2×
1
2
=2
3
,
設(shè)△ABC的外接圓的半徑為r,則2r=
2
3
sin60°
=4,
∴r=2,
∵AA1=6,
∴球O的半徑R=
4+9
=
13
,
∴球O的表面積為4π×13=52π.
故答案為:52π.
點(diǎn)評(píng):本題考查球O的表面積,考查學(xué)生的計(jì)算能力,確定球的半徑是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA=PC,
(1)證明:PB⊥AC;
(2)若平面PAC⊥平面平面ABCD,∠ABC=60°,PB=AB,求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n表示兩條不同直線,α表示平面,
①若m∥α,n∥α,則m∥n
②若m⊥α,n?α,則m⊥n
③若m⊥α,m⊥n,則n∥α
④若m∥α,m⊥n,則n⊥α
以上四個(gè)命題中正確命題個(gè)數(shù)( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)(2,
π
3
)到直線ρcos(θ+
π
6
)=1的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-kx-1,
(1)若f(x)在區(qū)間[1,4]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(2)求f(x)在區(qū)間[1,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC的內(nèi)角A,B,C的對(duì)邊,且C=2A,cosA=
3
4

(1)求c:a的值;
(2)求證:a,b,c成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、命題“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B、命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C、“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥(ax)min在x∈[1,2]上恒成立”
D、命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2
3

(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)求(1)中雙曲線的右焦點(diǎn)到漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x與y=-3-x的圖象關(guān)于( 。
A、x軸對(duì)稱
B、y軸對(duì)稱
C、直線y=x對(duì)稱
D、原點(diǎn)中心對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案