12.已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(-1,0).是否存在常數(shù)a,b,c,使不等式x≤f(x)≤$\frac{1+x^2}{2}$,對?x∈R都成立?若存在,求出a,b,c的值;若不存在,請說明理由.

分析 通過圖象過一點得到a、b、c一關系式,觀察發(fā)現(xiàn)1≤f(1)≤1,又可的一關系式,再將b、c都有a表示.不等式x≤f(x)≤$\frac{1{+x}^{2}}{2}$對一切實數(shù)x都成立可轉化成兩個一元二次不等式恒成立,即可解得.

解答 解:∵f(x)的圖象過點(-1,0),∴a-b+c=0①
∵x≤f(x)≤$\frac{1{+x}^{2}}{2}$對一切x∈R均成立,
∴當x=1時也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=$\frac{1}{2}$,c=$\frac{1}{a}$-a.
∴f(x)=ax2+$\frac{1}{2}$x+$\frac{1}{2}$-a.
故x≤ax2+$\frac{1}{2}$x+$\frac{1}{2}$-a≤$\frac{1{+x}^{2}}{2}$對一切x∈R成立,
即$\left\{\begin{array}{l}{\frac{1}{4}-4a(\frac{1}{2}-a)≤0}\\{1-8a(1-2a)≤0}\\{a>0}\\{1-2a>0}\end{array}\right.$,
解得a=$\frac{1}{4}$.
∴c=$\frac{1}{2}$-a=$\frac{1}{4}$.
∴常數(shù)a,b,c的值為:$\frac{1}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.

點評 本題考查了函數(shù)恒成立問題,以及二次函數(shù)的性質,賦值法(特殊值法)可以使問題變得比較明朗,它是解決這類問題比較常用的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知等比數(shù)列{an}滿足a1+a2+a3=1,a4+a5+a6=8,則a2+a3+a4=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設a>0,b>0,若a+b=4,則$\frac{1}{a}+\frac{4}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某火鍋店為了了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(Ⅰ)求y關于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額.
(Ⅲ)設該地1月份的日最低氣溫X~N(μ,δ2),其中μ近似為樣本平均數(shù)$\overline{x}$,δ2近似為樣本方差s2,求P(3.8<X<13.4)
附:①回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),則P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}前n項和為Sn,首項為a1,且$\frac{1}{2}$,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a3n+1)×(log2a3n+4),求證:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,得到5組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5).根據(jù)收集到的數(shù)據(jù)可知$\overline{x}$=20,由最小二乘法求得回歸直線方程為$\widehat{y}$=0.6x+48,則y1+y2+y3+y4+y5=( 。
A.60B.120C.150D.300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.菜農定期使用低害殺蟲農藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農藥,使用時需要用清水清洗干凈,如表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農藥y(單位:微克)的統(tǒng)計表:
x12345
y5854392910
(Ⅰ)在如圖的坐標系中,描出散點圖,并判斷變量x與y的相關性;
(Ⅱ)若用解析式$\widehat{y}$=cx2+d作為蔬菜農藥殘量$\widehat{y}$與用水量x的回歸方程,令ω=x2,計算平均值$\overline{ω}$和$\overline{y}$,完成如下表格,求出$\widehat{y}$與x回歸方程.(c,d精確到0.01)
ω1491625
y5854392910
ωi-$\overline{ω}$
yi-$\overline{y}$
(Ⅲ)對于某種殘留在蔬菜上的農藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要多少千克的清水洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}$≈2.236).
(附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中系數(shù)計算公式分別為:
$\widehat$=$\frac{\sum_{i-1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關系,隨機統(tǒng)計了四個工作日的用電量與當天平均氣溫,并制作了對照表:
氣溫(℃)181310-1
用電量(度)24m-263866+n
由表中數(shù)據(jù)得到線性回歸方程y=nx+m,若樣本點的中心為($\overline{x}$,40),則當氣溫降低2℃時,用電量(  )
A.增加4度B.降低4度C.增加120度D.降低120度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow$=(1,x,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=4.

查看答案和解析>>

同步練習冊答案