分析 (1)根據(jù)函數(shù)的極值,求出m的值,得到f(x)的表達(dá)式,從而求出f(x)的單調(diào)區(qū)間即可;
(2)分別根據(jù)導(dǎo)數(shù)和二次函數(shù)的性質(zhì)求出其最小值和最大值得到關(guān)于a的不等式,解出即可.
解答 解:(1)f′(x)=ex+m-$\frac{1}{x}$,若x=1是函數(shù)f(x)的極值點(diǎn),
則f′(1)=e1+m-1=0,解得:m=-1,
故f(x)=ex-1-lnx,f′(x)=ex-1-$\frac{1}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
故f(x)在(0,1)遞減,在(1,+∞)遞增;
(2)f'(x)=ex+xex=(1+x)ex,
當(dāng)x>-1時(shí),f'(x)>0,函數(shù)遞增;
當(dāng)x<-1時(shí),f'(x)<0,函數(shù)遞減,
所以當(dāng)x=-1時(shí),f(x)取得極小值即最小值 f(-1)=-$\frac{1}{e}$
函數(shù) g(x)的最大值為a,若?x1,x2∈R使得f(x1)≤g(x2)成立.
則有g(shù)(x)的最大值大于等于f(x)的最小值,
即a≥-$\frac{1}{e}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題、屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{5}$ | B. | -$\frac{1}{2}$ | C. | -$\sqrt{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | [-2,2] | C. | (-2,2] | D. | (-∞,-2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com