設(shè)過點(-2,a)和點(a,4)的直線的斜率等于1,則a的值等于

[  ]

A.1
B.4
C.1或3
D.1或4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a+bcosx+csinx的圖象過點(0,1)和點(
π
2
,1)
,當(dāng)x∈[0,
π
2
]
時,|f(x)|<2,則實數(shù)a的取值范圍是( 。
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c的圖象都過點P(2,0),且在點P處有相同的切線.
(Ⅰ)求實數(shù)a,b,c的值;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)+g(x),求F(x)在區(qū)間[-3,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L過點P(2,0),斜率為
43
,直線L和拋物線y2
=2x相交于A,B兩點,設(shè)線段AB的中點為M,求:
(1)P,M兩點間的距離/PM/:(2)M點的坐標(biāo);(3)線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為
3
的直線l過點(0,-2
3
)和橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)的焦點,且橢圓C的中心關(guān)于直線l的對稱點在橢圓C的右準(zhǔn)線上.
(1)求橢圓C的方程;
(2)點P,Q,R都在橢圓C上,PQ、PR分別過點M1(-1,0)、M2(1,0),設(shè)
PM1
M1Q
,
PM2
M2R
,當(dāng)P點在橢圓C上運動時,試問λ+μ是否為定值,并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線x=-1與橢圓相交于A、B兩點,P是橢圓上異于A、B的任意一點,直線AP、BP分別交定直線l:x=-4于兩點Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

同步練習(xí)冊答案