某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)二件甲產(chǎn)品使用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2h,生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,該廠每天最多可從配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天工作8h計(jì)算,該廠的日利潤(rùn)最大可為( )
A.13萬(wàn)元
B.14萬(wàn)元
C.8萬(wàn)元
D.9萬(wàn)元
【答案】分析:根據(jù)條件建立不等式組即線性目標(biāo)函數(shù),利用圖象可求該廠的日利潤(rùn)最大值.
解答:解:由題意,設(shè)生產(chǎn)x件A產(chǎn)品,y件B產(chǎn)品,最大利潤(rùn)為z,則
目標(biāo)函數(shù)為z=2x+3y,
,可得
利用線性規(guī)劃可得x=4,y=2時(shí),此時(shí)該廠的日利潤(rùn)最大為14萬(wàn)元
故選B.
點(diǎn)評(píng):本題考查線性規(guī)劃知識(shí),考查利潤(rùn)最大,解題的關(guān)鍵是確定線性約束條件及線性目標(biāo)函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品.為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù).現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)莖葉圖如圖所示:
(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種產(chǎn)品為一等品的概率PA、PB;
(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用ξ、η分別表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,求ξ、η的分布列及數(shù)學(xué)期望(均值)Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)x、y分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)須給出圖示)
表一
等級(jí)
利潤(rùn)
產(chǎn)品
一等品 二等品
A型 4(萬(wàn)元) 3(萬(wàn)元)
B型 3(萬(wàn)元) 2(萬(wàn)元)
表二
項(xiàng)目
用量
產(chǎn)品
配件(件) 資金(萬(wàn)元)
A型 6 4
B型 2 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(必修5) 2009-2010學(xué)年 第10期 總第166期 北師大課標(biāo)版(必修5) 題型:044

某工廠制造A種儀器45臺(tái),B種儀器55臺(tái).現(xiàn)需用薄鋼板給每臺(tái)儀器配一個(gè)外殼.已知鋼板有甲、乙兩種規(guī)格:甲種鋼板每張面積2 m2,每張可做A種儀器外殼3個(gè)和B種儀器外殼5個(gè);乙種鋼板每張面積3 m2,每張可做A種儀器外殼6個(gè)和B種儀器外殼6個(gè).問(wèn)甲、乙兩種鋼板各用多少?gòu),才能使用料最?/FONT>(“用料最省”是指所用鋼板的總面積最小)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品.為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù).現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)莖葉圖如圖所示:
(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種產(chǎn)品為一等品的概率PA、PB;
(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用ξ、η分別表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,求ξ、η的分布列及數(shù)學(xué)期望(均值)Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)x、y分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)須給出圖示)
   等級(jí)
利潤(rùn)
產(chǎn)品
一等品二等品
A型4(萬(wàn)元)3(萬(wàn)元)
B型3(萬(wàn)元)2(萬(wàn)元)
表二
       
表二
  項(xiàng)目
用量
產(chǎn)品
配件(件)資金(萬(wàn)元)
A型64
B型28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品. 為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù). 現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)如下面的莖葉圖所示:

(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種

產(chǎn)品為一等品的概率PA、PB;

(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用、分別

表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,

、的分布列及數(shù)學(xué)期望(均值);

   (3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求、為何值時(shí),最大?最大值是多少?(解答時(shí)須給出圖示)

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省湛江市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某工廠生產(chǎn)A、B兩種型號(hào)的產(chǎn)品,每種型號(hào)的產(chǎn)品在出廠時(shí)按質(zhì)量分為一等品和二等品.為便于掌握生產(chǎn)狀況,質(zhì)檢時(shí)將產(chǎn)品分為每20件一組,分別記錄每組一等品的件數(shù).現(xiàn)隨機(jī)抽取了5組的質(zhì)檢記錄,其一等品數(shù)莖葉圖如圖所示:
(1)試根據(jù)莖葉圖所提供的數(shù)據(jù),分別計(jì)算A、B兩種產(chǎn)品為一等品的概率PA、PB
(2)已知每件產(chǎn)品的利潤(rùn)如表一所示,用ξ、η分別表示一件A、B型產(chǎn)品的利潤(rùn),在(1)的條件下,求ξ、η的分布列及數(shù)學(xué)期望(均值)Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品所需用的配件數(shù)和成本資金如表二所示,該廠有配件30件,可用資金40萬(wàn)元,設(shè)x、y分別表示生產(chǎn)A、B兩種產(chǎn)品的數(shù)量,在(2)的條件下,求x、y為何值時(shí),z=xEξ+yEη最大?最大值是多少?(解答時(shí)須給出圖示)
      等級(jí)
利潤(rùn)
產(chǎn)品
一等品二等品
A型4(萬(wàn)元)3(萬(wàn)元)
B型3(萬(wàn)元)2(萬(wàn)元)
表二
              
表二
    項(xiàng)目
用量
產(chǎn)品
配件(件)資金(萬(wàn)元)
A型64
B型28


查看答案和解析>>

同步練習(xí)冊(cè)答案