己知函數(shù)在區(qū)間[-2,+∞)上是增函數(shù),則的范圍是
[     ]
A.≥25
B.=25
C.≤25
D.>25
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=
1
(x+1)ln(x+1)

(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的增區(qū)間;
(3)是否存在實(shí)數(shù)m,使不等式
1
2x+1
>(x+1)m在-1<x<0時(shí)恒成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       給出下列5個(gè)命題:

是函數(shù)在區(qū)間(,4]上為單調(diào)減函數(shù)的充要條件;

②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道II繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長(zhǎng)軸的長(zhǎng),則有;

③函數(shù)與它的反函數(shù)的圖象若相交,則交點(diǎn)必在直線y =x上;

④己知函數(shù)在(O, 1)上滿足,,貝U;

⑤函數(shù).,,/為虛數(shù)單位)的最小值為2

其中所有真命題的代號(hào)是_____________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       給出下列5個(gè)命題:

是函數(shù)在區(qū)間(,4]上為單調(diào)減函數(shù)的充要條件;

②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道II繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長(zhǎng)軸的長(zhǎng),則有

③函數(shù)與它的反函數(shù)的圖象若相交,則交點(diǎn)必在直線y =x上;

④己知函數(shù)在(O, 1)上滿足,,貝U

⑤函數(shù).,,/為虛數(shù)單位)的最小值為2

其中所有真命題的代號(hào)是_____________________高考高考資源

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       給出下列5個(gè)命題:

是函數(shù)在區(qū)間(,4]上為單調(diào)減函數(shù)的充要條件;

②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道II繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長(zhǎng)軸的長(zhǎng),則有;

③函數(shù)與它的反函數(shù)的圖象若相交,則交點(diǎn)必在直線y =x上;

④己知函數(shù)在(O, 1)上滿足,,貝U

⑤函數(shù).,,/為虛數(shù)單位)的最小值為2

其中所有真命題的代號(hào)是_____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案