已知數(shù)列{an}是首項(xiàng)為a1,各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且有5S2=4S4
(1)求數(shù)列{an}的公比q;
(2)設(shè)bn=q+Sn,試問(wèn){bn}是否為等比數(shù)列?若是求出a1的值;若不是說(shuō)明理由.
分析:(1)先確定q≠1,再利用等比數(shù)列的求和公式,可求數(shù)列{an}的公比q;
(2)假設(shè)存在,表示出bn,利用b1,b2,b3成等比數(shù)列,求出a1,與條件比較可得結(jié)論.
解答:解:(1)若q=1,5S2=10a1,4S4=16a1,不滿足5S2=4S4,故q≠1…(2分)
由5S2=4S45
a1(1-q2)
1-q
=4
a1(1-q4)
1-q
,1+q2=
5
4
,q2=
1
4

∵an>0,∴q=
1
2
…(5分)
(2)假設(shè)滿足條件的等比數(shù)列{bn}存在.
由(1)得Sn=
a1[1-(
1
2
)
n
]
1-
1
2
=2a1[1-(
1
2
)n]
,∴bn=
1
2
+2a1[1-(
1
2
)n]
,…(8分)
∵{bn}是等比數(shù)列,∴b1,b2,b3成等比數(shù)列,∴
b
2
2
=b1b3

(
3
2
a1+
1
2
)2=(a1+
1
2
)(
7
4
a1+
1
2
)
,整理得4
a
2
1
+a1=0
,得a1=0或a1=-
1
4
…(11分)
這與數(shù)列{an}各項(xiàng)均為正數(shù)矛盾,故數(shù)列{bn}不存在.…(12分)
點(diǎn)評(píng):本題考查等比數(shù)列的求和,考查學(xué)生的計(jì)算能力,正確運(yùn)用等比數(shù)列的通項(xiàng)與求和公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為3,公差為2的等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=
1
4
的等比數(shù)列,其前n項(xiàng)和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項(xiàng)分別是a1,a2,a6
(I)求數(shù)列{an}的通項(xiàng)公式an;
(II)若b1+b2+…bk=85,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,又?jǐn)?shù)列{bn}的前n項(xiàng)和Sn=nan
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an
(1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意n∈N*都有bn≥b5成立,求實(shí)數(shù)a的取值范圍;
(3)數(shù)列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當(dāng)a=-20時(shí),求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案