【題目】如圖,四邊形與均為菱形,,且.
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)由線面垂直的判定定理得到結(jié)論;(2)通過(guò)證明線線平行,得到線面平行;(3)建立空間直角坐標(biāo)系,求出平面的法向量,易知面,所以面的法向量為,再求出它們的夾角的余弦值.
試題解析:(1)證明:設(shè)與相交于點(diǎn),連接,因?yàn)樗倪呅?/span>為菱形,所以,且為中點(diǎn),又,所以,
因?yàn)?/span>,所以平面.
(2)證明:因?yàn)樗倪呅?/span>與均為菱形,
所以,,所以平面平面,
又平面,所以平面.
(3)解:因?yàn)樗倪呅?/span>為菱形,且,所以△為等邊三角形,
因?yàn)?/span>為中點(diǎn),所以,故平面.
由,,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系.
設(shè),因?yàn)樗倪呅?/span>為菱形,,則,所以,,
所以,,,,.
所以,.
設(shè)平面的法向量,則有所以
取,得.
易知平面的法向量為.
由二面角是銳角,得,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)字0、2、3、4、6按下列要求組數(shù)、計(jì)算:
(1)能組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?
(2)可以組成多少個(gè)可以被3整除的沒有重復(fù)數(shù)字的三位數(shù)?
(3)求即144的所有正約數(shù)的和.
(注:每小題結(jié)果都寫成數(shù)據(jù)形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價(jià)為120元,池壁每平方米的造價(jià)為100元.設(shè)池底長(zhǎng)方形的長(zhǎng)為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn)。其中有一題:今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高及去表各幾何? 譯文如下:要測(cè)量海島上一座山峰的高度,立兩根高均為丈的標(biāo)桿和,前后標(biāo)桿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,問(wèn)島峰的高度 步. (古制:步=尺,里=丈=尺=步)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界)。
(Ⅰ)向區(qū)域A隨機(jī)拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;
(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)落在區(qū)域B的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為短軸頂點(diǎn)在圓上.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點(diǎn),若斜率為1的直線與橢圓相交于兩點(diǎn),試探究以為底邊的等腰三角形是否存在?若存在,求出直線的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(I)設(shè),求的單調(diào)區(qū)間;
(II)若在處取得極大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)把的圖象向右平移個(gè)單位后,圖象恰好為函數(shù)的圖象,則的值可以是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為.過(guò)右焦點(diǎn)與軸不垂直的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)在線段上是否存在點(diǎn),使得?若存在,求出的取值范圍;若不存在,請(qǐng)
說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com