函數(shù)在區(qū)間[-2,2]上的值域是____________

 

【答案】

【解析】

試題分析:根據(jù)函數(shù),由于函數(shù)是底數(shù)大于5的對(duì)數(shù)函數(shù),那么說明函數(shù)是定義域內(nèi)的增函數(shù),則可知當(dāng)x=-2時(shí),函數(shù)取得最小值2,當(dāng)x=2時(shí),函數(shù)值取得最大值3,故答案為

考點(diǎn):函數(shù)的值域

點(diǎn)評(píng):解決的關(guān)鍵是利用函數(shù)的單調(diào)性,來分析其值域,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=sin(
1
2
x+
π
4
)
,求函數(shù)在區(qū)間[-2π,2π]上的單調(diào)增區(qū)間;
(2)計(jì)算:tan70°cos10°(
3
tan20°-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2-2ax+1在區(qū)間[-2,2]單調(diào)遞增,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c在區(qū)間[-2,2]上的最大值、最小值分別為M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={2},且a≥1,記g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于二次函數(shù)y=-4x2+8x-3,
(1)求函數(shù)在區(qū)間[-2,2]上的最大值和最小值;
(2)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:月考題 題型:解答題

(1)求函數(shù)在區(qū)間[-2,2]上的最大值,并求函數(shù)f(x)取得最大值時(shí)的x的取值;
(2)若函數(shù)在區(qū)間[-2,2]上的最大值為14,求實(shí)數(shù)a的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案