若A、B為銳角,滿足
sinA
sinB
=cos(A+B),則tanA的最大值為( 。
A、
2
4
B、
1
2
C、1
D、
2
分析:由題意可得可得-cosCsinB=sinA,結(jié)合正弦定理和余弦定理可得3a2+b2=c2.由于tan2A=
1
cos2A
-1,且A為銳角可得,可得 cosA>0,tanA>0.只要求出cosA的最小值,就可求得tanA的最大值,由余弦定理結(jié)合基本不等式可得cosA的最小值,進(jìn)而可得答案.
解答:解:由
sinA
sinB
=cos(A+B)可得cos(A+B)sinB=sinA,
故-cosCsinB=sinA,
再由正弦定理和余弦定理,-
a2+b2-c2
2ab
×b=a,化簡(jiǎn)可得 3a2+b2=c2
由于tan2A=
1
cos2A
-1,且A為銳角可得,可得 cosA>0,tanA>0.
只要求出cosA的最小值,就可求得tanA的最大值.
又cosA=
b2+c2-a2
2bc
=
2b2+c2
3bc
2
2
bc
3bc
=
2
2
3
,
當(dāng)且僅當(dāng)
2
b=c時(shí),等號(hào)成立.
即cosA的最小值為
2
2
3
. 故tan2A 的最大值為
1
8
,
故tanA的最大值為
1
8
=
2
4

故選:A
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù)公式,涉及正余弦定理的應(yīng)用,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形中,三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足條件sin22B+sin2BsinB+cos2B=1.
(Ⅰ)求∠B的值;
(Ⅱ)若b=3,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的有
②③④
②③④
(填序號(hào))
①若
a
b
滿足
a
b
>0,則
a
b
所成的角為銳角;
②若
a
b
不共線,
m
=λ1
a
+λ2
b
n
=μ1
a
+μ2
b
(λ1,λ2,μ1,μ2∈R),則
m
n
的充要條件是λ1μ22μ1=0;
③若
OA
+
OB
+
OC
=
O
,且|
OA
|=|
OB
|=|
OC
|
,則△ABC是等邊三角形;
④若
a
b
為非零向量,且
a
b
,則|
a
+
b
|=|
a
-
b
|;
⑤設(shè)
a
,
b
,
c
為非零向量,若
a
b
=
c
b
,則
a
=
c
;
⑥若
a
,
b
,
c
為非零向量,則
a
•(
b
c
)=(
a
b
)•
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(1,sin2x)
,
n
=(cos2x,
3
)
,f(x)=
m
n
.銳角△ABC的三內(nèi)角A、B、C對(duì)應(yīng)的三邊分別為a、b、c.滿足:f(A)=1.
(1)求角A;
(2)若a=2,△ABC的面積為
3
,求邊b、c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案