【答案】分析:先由定積分的性質(zhì)將其分解成兩個(gè)簡(jiǎn)單的函數(shù)的定積分,然后直接用微積分基本定理求解.
解答:解:∵,x=1
==
故答案為4.
點(diǎn)評(píng):本題考查的是定積分的運(yùn)算,解答的關(guān)鍵是求出被積函數(shù)的原函數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省惠州市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若p是真命題,q是假命題,則( )
A.p∧q是真命題
B.p∨q是假命題
C.﹁p是真命題
D.﹁q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林等四市高三(下)第二次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,PA=PD=2,底面ABCD是直角梯形,BC∥AD,
(1)求證:AB⊥平面PAD;
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林等四市高三(下)第二次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知a∈R,i是虛數(shù)單位,復(fù)數(shù)z1=2+ai,z2=1-2i,若為純虛數(shù),則復(fù)數(shù)的虛部為( )
A.i
B.0
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三(下)4月質(zhì)量檢查數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有
代入③得 
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三(下)4月質(zhì)量檢查數(shù)學(xué)試卷2(文科)(解析版) 題型:選擇題

已知{an}是公差為2的等差數(shù)列,且a1,a3,a4成等比數(shù)列,則數(shù)列{an}的前9項(xiàng)和等于( )
A.0
B.8
C.144
D.162

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年海南省瓊海市高考數(shù)學(xué)模擬測(cè)試1(文科)(解析版) 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中,圓C的參數(shù)方程為以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸,并取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線l的極坐標(biāo)方程
(I)求圓心的極坐標(biāo).
(II)若圓C上點(diǎn)到直線l的最大距離為3,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年海南省瓊海市高考數(shù)學(xué)模擬測(cè)試1(文科)(解析版) 題型:選擇題

平面區(qū)域D是由不等式組確定,則圓(x-1)2+y2=4在區(qū)域D內(nèi)的弧長(zhǎng)等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷(十一)(解析版) 題型:選擇題

若非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},則滿足A∪B=B的所有a的集合是( )
A.{a|1≤a≤9}
B.{a|6≤a≤9}
C.{a|a≤9}
D.∅

查看答案和解析>>

同步練習(xí)冊(cè)答案