【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,求數(shù)列{an}的前n項(xiàng)和Tn

【答案】
(1)

解:設(shè)等差數(shù)列{an}的公差為d,∵a2=3,S6=36.

,解得a1=1,d=2.

∴an=1+2(n﹣1)=2n﹣1.


(2)

解:bn= = = ),

∴數(shù)列{an}的前n項(xiàng)和Tn= + +…+( )]

=

=


【解析】(1)利用等差數(shù)列通項(xiàng)公式及其前n項(xiàng)和公式即可得出;(2)利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.

(1)求展開(kāi)式中的常數(shù)項(xiàng);

(2)求展開(kāi)式中所有整式項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=8x的準(zhǔn)線與雙曲線 =1(a>0,b>0)相交于A、B兩點(diǎn),雙曲線的一條漸近線方程是y= x,點(diǎn)F是拋物線的焦點(diǎn),且△FAB是等邊三角形,則該雙曲線的標(biāo)準(zhǔn)方程是( )
A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,直線E交于A、B兩點(diǎn),且,其中O為原點(diǎn).

1)求拋物線E的方程;

2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:函數(shù)f(x)=|2x+3c|[-1,+∞)上單調(diào)遞增;命題q:函數(shù)g(x)=+2有零點(diǎn).

(1)若命題pq均為真命題,求實(shí)數(shù)c的取值范圍;

(2)是否存在實(shí)數(shù)c,使得p∧(q)是真命題?若存在,求出c的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,=Sn+1+Sn.

(1)求{an}的通項(xiàng)公式;

(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn),則直線AE與平面A1ED1所成角的大小為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案