a,b,c∈R+,求證:(a+1)(b+1)(a+c)3(b+c)3≥256a2b2c3
分析:根據(jù)均值不等式:a+1≥2
a
及b+1≥2
b
,又由(a+c)3≥( 2
ac
3=8ac
ac
,即(a+c)3≥8ac
ac
,(b+c)3≥( 2
bc
3=8bc
bc
,即:(b+c)3≥8bc
bc
,將這4個同向不等式相乘得:要證的不等式.
解答:解:∵a,b,c∈R+
∴a+1≥2
a
①,
b+1≥2
b
②,
∵a+c≥2
ac

∴(a+c)3≥8ac
ac
③,
∵b+c≥2
bc

∴(b+c)3≥=8bc
bc
④,
將①②③④這4個同向不等式相乘得:
(a+1)(b+1)(a+c)3(b+c)3≥2
a
•2
b
•8ac
ac
•8bc
bc

即:(a+1)(b+1)(a+c)3(b+c)3≥256a2b2c3
點評:本題考查均值不等式:a+b≥2ab,及關(guān)于正數(shù)的不等式的同向相乘性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax4+bx2+cx+1(a,b,c∈R),在x=-1處取得極值-
14
,在x=-2處的切線與直線x-8y=0垂直.
(1)求常數(shù)a,b,c的值;
(2)對于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線,求函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1的“分界線”方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)本題有(1)、(2)、(3)三個選做題,每題7分,請考生任選2題作答,滿分l4分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填人括號中.
(1)選修4-2:矩陣與變換
利用矩陣解二元一次方程組
3x+y=2
4x+2y=3

(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=1.圓的參數(shù)方程為
x=1+rcosq
y=1+rsinq
(θ為參數(shù),r>0),若直線l與圓C相切,求r的值.
(3)選修4-5:不等式選講
已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(Ⅰ) 已知f(0)=1,
  (。┤鬴(x)<0的解集為(
12
,1)
,求f(x)的表達(dá)式;
  (ⅱ)若f(1)=0,且a<1,試用含a的代數(shù)式表示b,并求此時f(x)>0的解集.
(Ⅱ) 已知a=1,若x1,x2是方程f(x)=0的兩個根,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c(a,b,c∈R)的圖象過原點,且在x=1處的切線為直線y=-
12

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-2,2]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f (x)=x•3x;
(1)求函數(shù)y=f (x)-3(ln3+1)x的最小值.
(2)對于?a、b、c∈R,當(dāng)a+b+c=3時,求證:3aa+3bb+3cc≥9.

查看答案和解析>>

同步練習(xí)冊答案