已知數(shù)列{an}的前n項(xiàng)和Sn=n2+
1
2
n,則a32-a22=(  )
A、9
B、18
C、21
D、
11
2
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:直接利用已知條件,求出數(shù)列的前3項(xiàng),然后求解即可.
解答: 解:數(shù)列{an}的前n項(xiàng)和Sn=n2+
1
2
n,則a1=
3
2
,a2=5-
3
2
=
7
2
,a3=
11
2
 
∴a32-a22=(
11
2
)2-(
7
2
)
2
=18.
故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列求和,數(shù)列項(xiàng)的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

縣教育局將甲、乙等五名新招聘的教師分配到三個(gè)不同的學(xué)校,每個(gè)學(xué)校至少分配一名教師,且甲、乙兩名教師必須分到同一個(gè)學(xué)校,則不同分法的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正數(shù)等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn,滿足2Sn+bn=1.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)如果cn=anbn,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,是否存在正整數(shù)n,使得Tn>Sn成立,若存在,求出n的最小值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α終邊上一點(diǎn)P(-4a,3a),a≠0,求
cos(
π
2
+α)sin(3π-α)
cos(
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

變量x,y滿足約束條件
x-y≥1
x+y≤4
y≥1
,目標(biāo)函數(shù)z=2x+4y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(z-1)i=5(i為虛數(shù)單位),則z•
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
2
(x2-4x-5)的定義域?yàn)?div id="rt4gvoh" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={m|m=a+b
2
,a∈Q,b∈Q}
,若x∈M那么x2與集合M的關(guān)系是x2
 
M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,y軸正半軸上的點(diǎn)列{An}與曲線y=
2x
(x>0)上的點(diǎn)列{Bn}滿足|OAn|=|OBn|=
1
n
,直線AnBn
在x軸上的截距為an,點(diǎn)Bn的橫坐標(biāo)為bn,n∈N*
(1)證明:an>an+1>4,n∈N*
(2)證明:存在n0∈N*,使得對(duì)任意的n>n0,都有
b2
b1
+
b3
b2
+…+
bn
bn-1
+
bn+1
bn
<n-2004.

查看答案和解析>>

同步練習(xí)冊(cè)答案