19.函數(shù)f(x)=$\frac{ln(x+2)}{\sqrt{x-1}}$的定義域為(  )
A.(-2,+∞)B.(1,+∞)C.(-2,1)D.[1,+∞)

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x+2>0}\\{x-1>0}\end{array}\right.$,解得:x>1.
∴函數(shù)f(x)=$\frac{ln(x+2)}{\sqrt{x-1}}$的定義域為(1,+∞).
故選:B.

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$的單調(diào)減區(qū)間為(  )
A.[-2,+∞)B.(-∞,-2]C.(-∞,-6]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知各項為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求證:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,已知線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=x-2sinx,則$f({-\frac{π}{6}})、f({-1})、f({{{log}_3}1.2})$的大小關系為( 。
A.$f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$B.$f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$
C.$f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$D.$f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設定義在[-3,3]上的偶函數(shù)f(x),當x≥0時,f(x)單調(diào)遞減,若f(1-2m)<f(2m)成立,則m的取值范圍是[-1,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知二次函數(shù)f(x)的對稱軸x=-2,f(x)的圖象被x軸截得的弦長為2$\sqrt{3}$,且滿足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,對x∈[-1,1]恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若原命題的否命題是“若x∉N,則x∉Z”,則原命題的逆否命題是真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,則m+n的取值范圍為[0,4).

查看答案和解析>>

同步練習冊答案