三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥BC,E是A1C的中點(diǎn),ED⊥A1C,ED與AC交于點(diǎn)D,A1A=AB=BC.

(Ⅰ)證明:B1C1∥平面A1BC;

(Ⅱ)證明:A1C⊥平面EDB;

(Ⅲ)求平面A1AB與平面EDB所成的二面角的大小(僅考慮平面角為銳角的情況).

答案:
解析:

  (1)證:三棱柱是平行四邊形

   ,

    4分

  (2) 

   E為的中點(diǎn)

   又  9分

  (3)建立空間坐標(biāo)系B-xyz

  設(shè),,,

  平面的法向量為,平面的法向量為,

   所求的二面角的大小為  14


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)三棱柱ABC-A1B1C1中,M、N分別是A1B、B1C1上的點(diǎn),且BM=2A1M,C1N=2B1N.設(shè)
AB
=
a
,
AC
=
b
,
AA1
=
c

(Ⅰ)試用
a
,
b
c
表示向量
MN
;
(Ⅱ)若∠BAC=90°,∠BAA1=∠CAA1=60°,AB=AC=AA1=1,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影為BC的中點(diǎn),則異面直線A1B與CC1所成的角的余弦值為(  )
A、
7
4
B、
5
4
C、
3
4
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分別是A1B1,AB 的中點(diǎn),給出如下三個(gè)結(jié)論:
①C1M⊥平面A1ABB1
②A1B⊥AM
③平面AMC1∥平面CNB1,其中正確結(jié)論為
①②③
①②③
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1D1中,點(diǎn)M是A1B的中點(diǎn),點(diǎn)N是B1C的中點(diǎn),連接MN.
(I)證明:MN∥平面ABC;
(II)若AB=1,AC=AA1
3
,BC=2
,點(diǎn)P是CC1的中點(diǎn),求四面體B1-APB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知三棱柱ABC-A1B1C1,底面△ABC為正三角形,AA1⊥平面ABC,BC=
2
BB1=2
2
,O為BC中點(diǎn).
(Ⅰ)求證:A1B∥平面AOC1
(Ⅱ)求直線AC與平面AOC1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案