奇函數(shù)f(x)的圖象如圖所示,其定義域?yàn)?-∞,0)∪(0,+∞),則不等式x[f(x)-f(-x)]<0的解集是
A.(-∞,-3)∪(3,+∞) B.(-∞,-3)∪(0,3)
C.(-3,0)∪(0,3) D.(-3,0)∪(3,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(滿分16分)
記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動點(diǎn),則不動點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若函數(shù)f(x)=的圖象上有兩個(gè)關(guān)于原點(diǎn)對稱的不動點(diǎn),求a、b滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動點(diǎn)分別為A、A′,P為函數(shù)f(x)的圖象上的另一點(diǎn),且其縱坐標(biāo)yP>3,求點(diǎn)P到直線AA′距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)命題“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動點(diǎn),則不動點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,試給予證明,并舉出一例;若不正確,試舉一反例說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動點(diǎn),則不動點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動點(diǎn),則不動點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
(請將解答寫在規(guī)定的區(qū)域,寫在其它區(qū)域的不得分。)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分16分)記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對稱的不動點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動點(diǎn),則不動點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉出一反例說明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com