已知雙曲線(xiàn)C的方程為x2-
y2
4
=1,點(diǎn)A(m,2m)和點(diǎn)B(n,-2n)(其中m和n均為正數(shù))是雙曲線(xiàn)C的兩條漸近線(xiàn)上的兩個(gè)動(dòng)點(diǎn),雙曲線(xiàn)C上的點(diǎn)P滿(mǎn)足
AP
=λ•
PB
(其中λ∈[
1
2
,3]).
(1)用λ的解析式表示mn;
(2)求△AOB(O為坐標(biāo)原點(diǎn))面積的取值范圍.
(1)由已知,點(diǎn)A(m,2m)和點(diǎn)B(n,-2n),設(shè)P(x,y)
AP
=λ•
PB
,得
x=
m+λn
1+λ
y=
2m-2λn
1+λ
,故P點(diǎn)的坐標(biāo)為(
m+λn
1+λ
,
2(m-λn)
1+λ
),…(3分)
將P點(diǎn)的坐標(biāo)代入x2-
y2
4
=1,化簡(jiǎn)得,mn=
(1+λ)2
.…(3分)
(2)設(shè)∠AOB=2θ,則tanθ=2,所以sin2θ=
4
5
.…(1分)
又|OA|=
5
m
,|OB|=
5
n
,
所以S△AOB=
1
2
|OA||OB|sin2θ=2mn=
1
2
(1+λ)2
λ
=
1
2
(λ+
1
λ
)+1
,…(3分)
記S(λ)=
1
2
(λ+
1
λ
)+1
,λ∈[
1
2
,3]).
則S(λ)在λ∈[
1
2
,3])上是減函數(shù),在λ∈[1,3]上是增函數(shù).…(2分)
所以,當(dāng)λ=1時(shí),S(λ)取最小值2,當(dāng)λ=3時(shí),S(λ)取最大值
8
3

所以△AOB面積的取值范圍是[2,
8
3
].…(2分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的方程為:
x2
9
-
y2
16
=1
(1)求雙曲線(xiàn)C的離心率;
(2)求與雙曲線(xiàn)C有公共的漸近線(xiàn),且經(jīng)過(guò)點(diǎn)A(-3,2
3
)的雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的方程為
y2
a2
-
x2
b2
=1
(a>0,b>0),離心率e=
5
2
,頂點(diǎn)到漸近線(xiàn)的距離為
2
5
5
.求雙曲線(xiàn)C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)已知雙曲線(xiàn)C的方程為x2-
y2
4
=1,點(diǎn)A(m,2m)和點(diǎn)B(n,-2n)(其中m和n均為正數(shù))是雙曲線(xiàn)C的兩條漸近線(xiàn)上的兩個(gè)動(dòng)點(diǎn),雙曲線(xiàn)C上的點(diǎn)P滿(mǎn)足
AP
=λ•
PB
(其中λ∈[
1
2
,3]).
(1)用λ的解析式表示mn;
(2)求△AOB(O為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),過(guò)右焦點(diǎn)F作雙曲線(xiàn)在一,三象限的漸近線(xiàn)的垂線(xiàn)l,垂足為P,l與雙曲線(xiàn)C的左右的交點(diǎn)分別為A,B
(1)求證:點(diǎn)P在直線(xiàn)x=
a2
c
上(C為半焦距).
(2)求雙曲線(xiàn)C的離心率e的取值范圍.
(3)若|AP|=3|PB|,求離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,它的左、右焦點(diǎn)分別F1,F(xiàn)2,左右頂點(diǎn)為A1,A2,過(guò)焦點(diǎn)F2先做其漸近線(xiàn)的垂線(xiàn),垂足為p,再作與x軸垂直的直線(xiàn)與曲線(xiàn)C交于點(diǎn)Q,R,若PF2,A1A2,QF1依次成等差數(shù)列,則離心率e=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案