過原點O作兩條相互垂直的直線分別與橢圓P:
x2
2
+y2=1
交于A、C與B、D,則四邊形ABCD面積最小值為______.
由題意可得四邊形ABCD的對角線互相垂直,且四個頂點在橢圓
x2
2
+y2=1
上.
可設A(
2
cosα,sinα ),B(
2
cos[α+90°],sin[α+90°]),0°≤α≤180°.
則四邊形ABCD面積等于4×S△AOB=4×
1
2
|OA|?|OB|=2
2cos2α+sin2α
×
2cos2(α+90°)+sin2(α+90°)

=2
(1+cos2α)(1+sin2α)
=2
2+
1
4
sin2 2α
≥2
2

當且僅當sin2α=0,即 α=0°或180°時,等號成立.
故四邊形ABCD面積的最小值等于2
2

故答案為:2
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過原點O作兩條相互垂直的直線分別與橢圓P:
x2
2
+y2=1
交于A、C與B、D,則四邊形ABCD面積最小值為( 。
A、
8
3
B、4
2
C、2
2
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過原點O作兩條相互垂直的直線分別與橢圓P:
x2
2
+y2=1
交于A、C與B、D,則四邊形ABCD面積最小值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:武漢模擬 題型:單選題

過原點O作兩條相互垂直的直線分別與橢圓P:
x2
2
+y2=1
交于A、C與B、D,則四邊形ABCD面積最小值為( 。
A.
8
3
B.4
2
C.2
2
D.
4
3

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年陜西省西安一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

過原點O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D,則四邊形ABCD面積最小值為( )
A.
B.4
C.2
D.

查看答案和解析>>

同步練習冊答案