若拋物線y=
1
2
x2上距點(diǎn)A(0,a)(a>0)最近的點(diǎn)恰好是原點(diǎn),求實(shí)數(shù)a的取值范圍.
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先表示出距離,將拋物線代入化簡(jiǎn),再研究其最值即可.
解答: 解:設(shè)距離為d,
根據(jù)題意得:d2=(y-a)2+x2 ,
∵y=
1
2
x2,
∴上式可整理得:d2=[y+(1-a)]2+2a-1,
∵a>0且y≥0,
∴要求d的最小值,
則要考慮1-a的范圍,
當(dāng)1-a≥0時(shí),y取0時(shí)d取最小值,
此時(shí)最近的點(diǎn)恰好是拋物線的頂點(diǎn),剛好符合題意,
當(dāng)1-a<0,即a>1時(shí),y取a-1時(shí)有最小值,不成立.
∴a的范圍為0<a≤1.
點(diǎn)評(píng):本題主要考查拋物線的幾何性質(zhì),考查距離公式的運(yùn)用,應(yīng)注意分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線3x+4y-3=0與直線6x+my+14=0平行,求這兩條平行線之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+x•sin2θ-sinθ•cotθ=0的兩根為α、β且0<θ<2π,若數(shù)列1,(
1
α
+
1
β
),(
1
α
+
1
β
2…的前2008項(xiàng)和為0,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c為正實(shí)數(shù)且滿足a+2b+3c=6,
(Ⅰ)求abc的最大值;
(Ⅱ)求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長都等于1,點(diǎn)E、F、G分別是AB、AD、CD的中點(diǎn),計(jì)算:
(1)
EF
BA
;
(2)
EF
DC
;
(3)EG的長;
(4)異面直線AG與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,已知復(fù)數(shù)z1=2cosα-2isinα,z2=3cosβ+3isinβ,|z1-z2|=
5

(Ⅰ)求cos(α+β)的值;
(Ⅱ)若0<α,β<
π
2
,且sinβ=
5
5
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2
1
0
f(x)dx,則
1
0
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|
x+1
x-2
≥0
},B={x|1<2x<8},則(∁UA)∩B等于( 。
A、[-1,3)
B、(0,2]
C、(1,2]
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)上點(diǎn)P(1,f(1))處的切線方程為3x-y+1=0.
(1)若y=f(x)在x=-2時(shí)有極值,求y=f(x)的表達(dá)式;
(2)在(1)的條件下求y=f(x)在[-3,2]上的最值及相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案