精英家教網 > 高中數學 > 題目詳情
9、若f(x)=
13
x3+3xf′(0)
,則f′(1)=
 
分析:先對函數進行求導,利用賦值法先求出f'(0),然后即可求出所求.
解答:解:∵f(x)=
1
3
x3+3xf′(0)

∴f'(x)=x2+3f'(0),
令x=0得f'(0)=0,則f'(x)=x2
令x=1得f′(1)=1,
故答案為1.
點評:本題主要考查了導數的運算,以及賦值法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•房山區(qū)二模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″(x)是f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發(fā)現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且拐點就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數的對稱中心為
(
1
2
,1)
(
1
2
,1)
,計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f'(x)是函數y=f(x)的導數,f''是f'(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發(fā)現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據這一發(fā)現,求:
(1)函數f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對稱中心為
(
1
2
,1)
(
1
2
,1)
;
(2)計算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:f′(x)是函數f(x)的導函數,f″(x)是f′(x)的導函數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經研究發(fā)現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且拐點就是對稱中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據這一發(fā)現,求:
(1)函數f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
 
;
(2)f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)
=
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

9、若f(x)=
1
3
x3+3xf′(0)
,則f′(1)=______.

查看答案和解析>>

同步練習冊答案