A. | 5 | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | 9 |
分析 先根據(jù)條件畫出可行域,設(shè)z=ax+by,再利用幾何意義求最值,將最大值轉(zhuǎn)化為y軸上的截距,只需求出直線z=ax+by,過(guò)可行域內(nèi)的點(diǎn)(1,4)時(shí)取得最大值,從而得到一個(gè)關(guān)于a,b的等式,最后利用基本不等式求最小值即可
解答 解:不等式表示的平面區(qū)域如圖所示陰影部分,
當(dāng)直線ax+by=z(a>0,b>0)過(guò)直線8x-y-4=0與y=4x的交點(diǎn)B(1,4)時(shí),
目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大2,
即a+4b=2,
則$\frac{1}{a}+\frac{1}$=$\frac{1}{2}$(a+4b)($\frac{1}{a}+\frac{1}$)=$\frac{1}{2}$(5+$\frac{4b}{a}+\frac{a}$)$≥\frac{1}{2}$(5+4)=$\frac{9}{2}$;
當(dāng)且僅當(dāng)a=2b時(shí)等號(hào)成立;
故選:C.
點(diǎn)評(píng) 本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0” | |
B. | “a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件 | |
C. | 命題“若隨機(jī)變量X~N(1,4),P(X≤0)=m,則P(0<X<2)=1-2m.”為真命題 | |
D. | 若命題P:?n∈N,2n>1000,則¬P:?n∈N,2n>1000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com