如圖,在三棱錐S-ABC中,SA⊥平面ABC,AB⊥BC,DE垂直平分SC,分別交AC、SC于D、E,且SA=AB=a,BC=

(1)求證:SC⊥平面BDE;

(2)求平面BDE與平面BDC所成二面角的大小.

答案:
解析:


提示:

  分析:(1)根據(jù)已知條件提供的數(shù)量關(guān)系通過計(jì)算證明有關(guān)線線垂直.(2)利用已得的垂直關(guān)系找出二面角的平面角.

  解題心得:根據(jù)二面角平面角的定義,二面角的平面角所在平面和二面角的棱垂直,因此找出二面角所在棱的一個(gè)垂面是作二面角平面角的一種常用和基本的方法.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求證:AB⊥BC;
(2)若設(shè)二面角S-BC-A為45°,SA=BC,求二面角A-SC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)求點(diǎn)B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)如圖,在三棱錐S-ABC中,SA=SC=AB=BC,則直線SB與AC所成角的大小是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都一模)如圖,在三棱錐S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,點(diǎn)P是SC的中點(diǎn),則異面直線SA與PB所成角的正弦值為( 。

查看答案和解析>>

同步練習(xí)冊答案