【題目】[選修4—5:不等式選講]
已知函數(shù).
(1)當時,求不等式的解集;
(2)若不等式的解集包含,求的取值范圍.
【答案】(Ⅰ) ,或 (Ⅱ)或
【解析】
試題分析:
(1)主要考查了含絕對值不等式的解法.當時,這里可采用零點分段法即可解出不等式的解集.(2)不等式的解集包含,易知當x∈[1,3]時,不等式f(x)≥|x﹣6|恒成立,適當變形為|x﹣a|≥|x﹣6|﹣|x﹣5|=6﹣x﹣(5﹣x)=1,即得|x﹣a|≥1在x∈[1,3]恒成立.
試題解析:
解:(1)當a=3時,求不等式f(x)≥3,即|x﹣3|+|x﹣5|≥3,
∴①,或 ②,或③.
解①求得x≤;解②求得x∈;解③求得x≥.
綜上可得,不等式f(x)≥3的解集為{x|x≤,或 x≥}.
(2)若不等式f(x)≥|x﹣6|的解集包含[1,3],
等價于當x∈[1,3]時,不等式f(x)≥|x﹣6|恒成立,
即|x﹣a|+|x﹣5|≥|x﹣6|恒成立,即|x﹣a|≥|x﹣6|﹣|x﹣5|=6﹣x﹣(5﹣x)=1恒成立,即|x﹣a|≥1 恒成立,
∴x﹣a≥1,或 x﹣a≤﹣1恒成立,即a≤x﹣1,或a≥x+1 恒成立,∴a≤0,或a≥4.
綜上可得,a≤0,或a≥4.
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),曲線上的點對應(yīng)的參數(shù).在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.射線與曲線交于點.
(1)求曲線的直角坐標方程;
(2)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)。
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)在上的最小值點;
(2)若,求證:是函數(shù)在時單調(diào)遞增的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應(yīng)繳納的個稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據(jù)樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com