若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)M的坐標(biāo).

答案:
解析:

  解:由拋物線定義,設(shè)焦點(diǎn)為F(,0),

  則準(zhǔn)線為x=,M到準(zhǔn)線的距離為|MN|,

  則|MN|=|MF|=10,

  即-(-9)=10,∴p=2.

  故拋物線方程為y2=-4x.

  將M(-9,y)代入拋物線方程得y=±6.

  ∴M(-9,6)或M(-9,-6).

  解析:在涉及拋物線上的點(diǎn)到焦點(diǎn)的距離問題時(shí),往往將其轉(zhuǎn)化為該點(diǎn)到準(zhǔn)線距離問題解決.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:遼寧省沈陽(yáng)二中2011-2012學(xué)年高二上學(xué)期12月月考數(shù)學(xué)試題 題型:013

設(shè)經(jīng)過定點(diǎn)M(a,0)的直線與拋物線y2=2px相交于P,Q兩點(diǎn),若為常數(shù),則a的值為

[  ]
A.

p

B.

2p

C.

D.

-2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知拋物線y2=2pxp>0).過動(dòng)點(diǎn)Ma,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.

(Ⅰ)求a的取值范圍;

(Ⅱ)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知拋物線y2=2pxp>0).過動(dòng)點(diǎn)Ma,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.

(Ⅰ)求a的取值范圍;

(Ⅱ)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

已知拋物線y2=2px(p>0),過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,①若|AB|≤2p,求a的取值范圍;②若線段AB的垂直平分線交AB于點(diǎn)Q,交x軸于點(diǎn)N,求直角三角形MNQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課程高中數(shù)學(xué)疑難全解 題型:044

如圖所示,已知拋物線y2=2px(p>0),過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,且|AB|≤2p.

(1)求a的取值范圍;

(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案