已知直線經(jīng)過拋物線的焦點F,且與拋物線相交于A、B兩點.
(1)若,求點A的坐標(biāo);
(2)若直線的傾斜角為,求線段AB的長.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點的直線交直線于,過點的直線交軸于點,,.
(1)求動點的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點、,已知點的坐標(biāo)為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數(shù)列,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)、分別為橢圓的左、右兩個焦點.
(Ⅰ) 若橢圓C上的點到、兩點的距離之和等于4, 寫出橢圓C的方程和離心率.;
(Ⅱ) 若M、N是橢圓C上關(guān)于原點對稱的兩點,點P是橢圓上除M、N外的任意一點, 當(dāng)直線PM、PN的斜率都存在, 并記為、時, 求證: ·為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過定點,動點滿足,動點的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線與交于兩點,以為切點分別作的切線,兩切線交于點.
①求證:;②若直線與交于兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點。
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個銳角,它們的終邊分別交單位圓于兩點.已知兩點的橫坐標(biāo)分別是,.
(1)求的值;(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com