在平面直角坐標(biāo)系xOy中,已知圓心在第二象限,半徑為2的圓C與直線y=x相切于坐標(biāo)原點(diǎn)O.橢圓=1與圓C的一個(gè)交點(diǎn)到橢圓兩點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)試探求C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓右焦點(diǎn)F的距離等于線段OF的長(zhǎng).若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)設(shè)出圓的標(biāo)準(zhǔn)方程,由相切和過(guò)原點(diǎn)的條件,建立方程求解.
(2)要探求是否存在異于原點(diǎn)的點(diǎn)Q,使得該點(diǎn)到右焦點(diǎn)F的距離等于|OF|的長(zhǎng)度4,我們可以轉(zhuǎn)化為探求以右焦點(diǎn)F為圓心,半徑為4的圓(x─4)2+y2=8與(1)所求的圓的交點(diǎn)數(shù).
解答:解:(1)設(shè)圓心坐標(biāo)為(m,n)(m<0,n>0),
則該圓的方程為(x-m)2+(y-n)2=8已知該圓與直線y=x相切,
那么圓心到該直線的距離等于圓的半徑,則=2
即|m-n|=4①
又圓與直線切于原點(diǎn),將點(diǎn)(0,0)代入得m2+n2=8②
聯(lián)立方程①和②組成方程組解得
故圓的方程為(x+2)2+(y-2)2=8;
(2)|a|=5,∴a2=25,則橢圓的方程為=1
其焦距c==4,右焦點(diǎn)為(4,0),那么|OF|=4.
通過(guò)聯(lián)立兩圓的方程,解得x=,y=
即存在異于原點(diǎn)的點(diǎn)Q(),
使得該點(diǎn)到右焦點(diǎn)F的距離等于|OF|的長(zhǎng).
點(diǎn)評(píng):本題考查的是圓的位置關(guān)系和圓錐曲線的基本概念的理解.對(duì)于題中第二小問(wèn)中,探求是否存在異于原點(diǎn)的點(diǎn)Q,使得該點(diǎn)到右焦點(diǎn)F的距離等于|OF|的長(zhǎng)度4,轉(zhuǎn)化為探求以右焦點(diǎn)F為頂點(diǎn),半徑為4的圓(x─4)2+y2=8與(1)所求的圓的交點(diǎn)數(shù).可使問(wèn)題簡(jiǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案