已知平行四邊形ABCD的頂點(diǎn)A(-1,-2),B(3,-1),C(5,6),則頂點(diǎn)D的坐標(biāo)為
 
分析:設(shè)出點(diǎn)D,利用向量的坐標(biāo)的求法求出兩個向量的坐標(biāo),再利用向量相等的坐標(biāo)關(guān)系列出方程組,求出點(diǎn)的坐標(biāo).
解答:解:設(shè)D(x,y)則
在平行四邊形ABCD中
AB
=(4,1),  
DC
=(5-x,6-y)

又∵
AB
=
CD

4=5-x
1=6-y
解得
x=1
y=5

故答案為:(1,5)
點(diǎn)評:本題考查向量的坐標(biāo)的求法;相等向量的坐標(biāo)相同.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個頂點(diǎn)為H.
(1)若
OA
=
a
OB
=
b
,
OC
=
c
,
OH
=
h
,試用
a
、
b
、
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊上的中點(diǎn),連結(jié)DE.

(1)如圖,求證:DE是⊙O的切線;

(2)連結(jié)OE、AE,當(dāng)∠CAB為何值時,四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個頂點(diǎn)為H.
(1)若
OA
=
a
,
OB
=
b
OC
=
c
,
OH
=
h
,試用
a
b
、
c
表示
h

(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年遼寧省沈陽二中高一(下)期中數(shù)學(xué)試卷(必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個頂點(diǎn)為H.
(1)若,試用表示;
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省肇慶市南豐中學(xué)高三(上)數(shù)學(xué)復(fù)習(xí)試卷C (必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個頂點(diǎn)為H.
(1)若,試用表示
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

同步練習(xí)冊答案