20.已知某種商品的廣告費支出x(單位;萬元)與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
 x 2 4 5 6 8
 y 30 40 50 m70
根據(jù)表中提供的全部數(shù)據(jù),用最小二乘法得出y與x的線性回歸方程為$\stackrel{∧}{y}$=6.5x+17.5,則表中m的值為( 。
A.45B.50C.55D.60

分析 由表中數(shù)據(jù)計算$\overline{x}$、$\overline{y}$,根據(jù)回歸直線方程過樣本中心點,求出m的值.

解答 解:由表中數(shù)據(jù),計算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(30+40+50+m+70)=38+$\frac{m}{5}$,
∵回歸直線方程$\stackrel{∧}{y}$=6.5x+17.5過樣本中心,
∴38+$\frac{m}{5}$=6.5×5+17.5,
解得m=60.
故選:D.

點評 本題考查了回歸直線方程過樣本中心點的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=(cosx,2$\sqrt{3}$cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}{+c}^{2}{-b}^{2}}$,對任意滿足條件的A,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,A=$\frac{π}{4}$,CD⊥AB,且AB=3CD,則sinC=$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(2,x+2),且$\overrightarrow{a}$∥$\overrightarrow$,則x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點,E為PD的中點.
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={x|(x-3)(x+1)≤0},N={x|-2≤x≤2},則M∩N=( 。
A.[-1,2]B.[-2,-1]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x),y=g(x)的導(dǎo)函數(shù)圖象如圖,則y=f(x),y=g(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右端點分別為A、B兩點,點C(0,$\sqrt{2}$b),若線段AC的垂直平分線過點B,則雙曲線的離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x|+a,g(x)=2|x-1|.
(Ⅰ)若a=0,解不等式f(x)≥g(x);
(Ⅱ)若對任意x∈R,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案