設(shè)為奇函數(shù),為常數(shù),
(1)求的值;
(2)證明在區(qū)間上單調(diào)遞增;
(3)若,不等式恒成立,求實(shí)數(shù)的取值范圍。

(1)-1(2)∵,(),設(shè),則
,∴,在區(qū)間上單調(diào)遞增(3)

解析試題分析:(1)∵,∴
,即, ∴
(2)∵,(),設(shè),則
,∴
,在區(qū)間上單調(diào)遞增
(3)設(shè),則上是增函數(shù)
對(duì)恒成立,∴-
考點(diǎn):函數(shù)性質(zhì):奇偶性單調(diào)性
點(diǎn)評(píng):若函數(shù)滿足則是奇函數(shù),若滿足則是偶函數(shù),第二問(wèn)證明函數(shù)單調(diào)性采用的是定義的方法,此外導(dǎo)數(shù)法也是判定單調(diào)性常用方法,第三問(wèn)不等式恒成立問(wèn)題中常將其轉(zhuǎn)化為求函數(shù)最值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若f(x)在x=1處的切線方程為3x+y-6=0
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若對(duì)任意的,都有f(x)成立,求函數(shù)g(t)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使“p且q”為假命題、“p或q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得每年改造生態(tài)環(huán)境總費(fèi)用的22%。
(1)若,,請(qǐng)你分析能否采用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案;
(2)若、取正整數(shù),并用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案,請(qǐng)你求出、的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量函數(shù)
(Ⅰ)求的單調(diào)增區(qū)間;
(Ⅱ)若時(shí),的最大值為4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

石家莊市為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過(guò)100度時(shí),按每度0.52元計(jì)算,每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.6元計(jì)算.
(1)設(shè)月用電度時(shí),應(yīng)繳電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如下:

月份
一月
二月
三月
合計(jì)
繳費(fèi)金額




問(wèn)小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)p;函數(shù)上是增函數(shù),q:函數(shù)的定義域?yàn)镽.
(1)若,試判斷命題p的真假;
(2)若命題p與命題q一真一假,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒。
(1)試把方盒的容積表示為的函數(shù);(2)多大時(shí),方盒的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求不等式的解集;
(2)若存在x使不等式成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案