等差數(shù)列{an}滿足a2=12,an=-20,d=-2,則n=( 。
分析:直接把已知條件代入等差數(shù)列的通項(xiàng)公式求解n的值.
解答:解:在等差數(shù)列{an}中,a2=12,an=-20,d=-2,
則an=a2+(n-2)d,即-20=12-2(n-2),
解得n=18.
故選B.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn;
(2)令bn=
1
a
2
n
-1
(n∈N),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.則公差d=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足a3=3,a6=-3,則數(shù)列{an}的前n項(xiàng)和Sn的最大值為
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足:a3=1,a5=4,則a11=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足2a2 +2a12=a72 ,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5b9=( 。

查看答案和解析>>

同步練習(xí)冊答案