【題目】在平面直角坐標系xOy中,動點到兩坐標軸的距離之和等于它到定點的距離,記點P的軌跡為,給出下列四個結(jié)論:①關(guān)于原點對稱;②關(guān)于直線對稱;③直線有無數(shù)個公共點;④在第一象限內(nèi),x軸和y軸所圍成的封閉圖形的面積小于.其中正確的結(jié)論是________.(寫出所有正確結(jié)論的序號)

【答案】②③④

【解析】

由題意可得當(dāng)xy0,可得xy+x+y10,當(dāng)xy0時,﹣xy+x+y10,畫出P的軌跡圖形,由圖形可得不關(guān)于原點對稱,關(guān)于直線yx對稱,且直線y1與曲線有無數(shù)個公共點;曲線在第一象限與坐標軸圍成的封閉圖形的面積小于邊長為1的等腰三角形的面積,即可得到正確結(jié)論個數(shù).

解:動點Pxy)到兩坐標軸的距離之和等于

它到定點A1,1)的距離,

可得|x|+|y|,

平方化為|xy|+x+y10

當(dāng)xy0,可得xy+x+y10

y,即y=﹣1,

當(dāng)xy0時,﹣xy+x+y10,

即有(1xy1x

畫出動點P的軌跡為圖:

Γ關(guān)于原點對稱,不正確;

Γ關(guān)于直線yx對稱,正確;

直線y1與Γ有無數(shù)個公共點,正確;

在第一象限內(nèi),Γ與x軸和y軸所圍成的封閉圖形的面積小于,正確.

故答案為:②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為(為參數(shù),傾斜角),曲線C的參數(shù)方程為(為參數(shù),),以坐標原點為極點,軸正半軸為極軸建立極坐標系。

(1)寫出曲線的普通方程和直線的極坐標方程;

(2)若直線與曲線恰有一個公共點,求點的極坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應(yīng)的定額扣除標準,決定自2019年1月1日起施行,某機關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計

基本滿意

15

30

45

很滿意

25

10

35

合計

40

40

80

(1)根據(jù)列聯(lián)表,能否有99%的把握認為滿意程度與年齡有關(guān)?

(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻積分(單位:分)給予相應(yīng)的住房補貼(單位:元),現(xiàn)有兩種補貼方案,方案甲:;方案乙:.已知這8名員工的貢獻積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補貼的員工記為“類員工”.為了解員工對補貼方案的認可度,現(xiàn)從這8名員工中隨機抽取4名進行面談,求恰好抽到3名“類員工”的概率。

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓經(jīng)過,,三點,是線段上的動點,是過點且互相垂直的兩條直線,其中軸于點交圓、兩點.

1)若,求直線的方程;

2)若是使恒成立的最小正整數(shù).

①求的值;

②求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)若點、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左焦點為F(﹣10),離心率為,過點F的直線l與橢圓C交于A、B兩點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)過點F不與坐標軸垂直的直線交橢圓CA、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形中,,的中點. 將沿折起,使得平面平面.

(1)求證: .

(2)點是線段上的一動點,當(dāng)二面角大小為時,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,M(x0,1)C,|MF|=.

(1)p的值;

(2)若直線l經(jīng)過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).

查看答案和解析>>

同步練習(xí)冊答案