在△ABC中,
bcosC+ccosBa
=
 
分析:根據(jù)誘導(dǎo)公式與兩角和的正弦公式,證出sinA=sinBcosC+cosBsinC,結(jié)合正弦定理證出a=bcosC+ccosB,即可得到所求式子的值.
解答:解:∵△ABC中,A+B+C=π,
∴sinA=sin(π-A)=sin(B+C)=sinBcosC+cosBsinC.
根據(jù)正弦定理,得a=2RsinA,b=2RsinB,c=2RsinC,(R是△ABC外接圓半徑),
∵sinA=sinBcosC+cosBsinC,
∴2RsinA=2RsinBcosC+2RcosBsinC,即a=bcosC+ccosB,
由此可得
bcosC+ccosB
a
=1.
故答案為:1
點(diǎn)評:本題在△ABC中,求式子
bcosC+ccosB
a
的值.著重考查了三角形內(nèi)角和定理、三角恒等變換與正弦定理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、在平面幾何中,有射影定理:“在△ABC中,AB⊥AC,點(diǎn)A在BC邊上的射影為D,有AB2=BD•BC.”類比平面幾何定理,研究三棱錐的側(cè)面面積與射影面積、底面面積的關(guān)系,可以得出的正確結(jié)論是:“在三棱錐A-BCD中,AD⊥平面ABC,點(diǎn)A在底面BCD上的射影為O,則有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中AB⊥AC、AD⊥BC,D是垂足,則AB2=BD•BC(射影定理).類似的有命題:在三棱錐A-BCD(圖2)中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),則(S△ABC2=S△BCO•S△BCD(S表示面積.上述命題( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,在△ABC中,AB⊥AC,AD⊥BC,D為.垂足,則AB2=BD•BC,該結(jié)論稱為射影定理.如圖乙,在三棱錐A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),類比射影定理,探究S△ABC、S△BCO、S△BCD這三者之間滿足的關(guān)系是
S△ABC2=S△BCOS△BCD
S△ABC2=S△BCOS△BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省舟山市岱山縣大衢中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖甲,在△ABC中,AB⊥AC,AD⊥BC,D為.垂足,則AB2=BD•BC,該結(jié)論稱為射影定理.如圖乙,在三棱錐A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),類比射影定理,探究S△ABC、S△BCO、S△BCD這三者之間滿足的關(guān)系是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖甲,在△ABC中,AB⊥AC,AD⊥BC,D為.垂足,則AB2=BD•BC,該結(jié)論稱為射影定理.如圖乙,在三棱錐A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),類比射影定理,探究S△ABC、S△BCO、S△BCD這三者之間滿足的關(guān)系是   

查看答案和解析>>

同步練習(xí)冊答案