年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年西城區(qū)一模理)(14分)設(shè){an}是公差d≠0的等差數(shù)列,Sn是其前n項的和.
(1)若a1=4,且,求數(shù)列{an}的通項公式;
(2)是否存在的等差中項?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年臨沂一模理)(12分)
已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項。
(1)求數(shù)列{an}的通項公式;
(2)若bn=,sn=b1+b2+┉+bn,求sn+n•>50成立的正整數(shù) n的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年濰坊市質(zhì)檢理) (12分) 已知各項均為正數(shù)的等比數(shù)列{an},公比q>1,且滿足a2a4=64,a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),試比較An與Bn的大小,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com