已知函數(shù)數(shù)學(xué)公式,則f[f(-3)]的值為________.

-3
分析:-3在x<0這段上代入這段的解析式求出f(-3),將結(jié)果代入對應(yīng)的解析式,求出函數(shù)值即可.
解答:因?yàn)椋?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/151577.png' />,
∴f(-3)=-3+4=1
f[f(-3)]=f(1)=1-4=-3.
故答案為:-3.
點(diǎn)評:本題考查求分段函數(shù)的函數(shù)值:根據(jù)自變量所屬范圍,分段代入求.分段函數(shù)分段處理,這是研究分段函數(shù)圖象和性質(zhì)最核心的理念,具體做法是:分段函數(shù)的定義域、值域是各段上x、y取值范圍的并集,分段函數(shù)的奇偶性、單調(diào)性要在各段上分別論證;分段函數(shù)的最大值,是各段上最大值中的最大者.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足:(x-1)[f′(x)-f(x)]>0,f(2-x)=f(x)e2-2x,則下列判斷一定正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇0,1],且f(x)的圖象連續(xù)不間斷.若函數(shù)f(x)滿足:對于給定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),則稱f(x)具有性質(zhì)P(m).
(Ⅰ)已知函數(shù)f(x)=(x-
1
2
2,x∈[0,1],判斷f(x)是否具有性質(zhì)P(
1
3
),并說明理由;
(Ⅱ)已知函數(shù) f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性質(zhì)P(m),求m的最大值;
(Ⅲ)若函數(shù)f(x)的定義域?yàn)閇0,1],且f(x)的圖象連續(xù)不間斷,又滿足f(0)=f(1),求證:對任意k∈N*且k≥2,函數(shù)f(x)具有性質(zhì)P(
1
k
).

查看答案和解析>>

同步練習(xí)冊答案