已知三棱錐的三視圖,則該三棱錐的體積是(  )
A、
6
3
B、
2
6
3
C、
3
6
2
D、
6
2
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:如圖所示,AB=BC=CA=2,點(diǎn)P在側(cè)面ABC的射影為O,OP=2
2
.利用三棱錐的體積計(jì)算公式即可得出.
解答: 解:如圖所示,AB=BC=CA=2,點(diǎn)P在側(cè)面ABC的射影為O,OP=2
2

∴該三棱錐的體積V=
1
3
S△ABC•OP
=
1
3
×
3
4
×22×2
2
=
2
6
3

故選:B.
點(diǎn)評:本題考查了三棱錐的三視圖及其體積計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,Q為橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一動(dòng)點(diǎn),F(xiàn)(2,0)為橢圓E的右焦點(diǎn).QF的最小值為1,最大值為5,點(diǎn)A(1,0),點(diǎn)T為直線x=4上一動(dòng)點(diǎn),過F點(diǎn)的直線l與AT垂直,l上一點(diǎn)P滿足
PA
PT
=0.
(1)AP長是否為定值?若是,求出該定值,若不是,說明理由.
(2)求PQ最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知|
OA
|=2,|
OB
|=1,|
OC
|=4,且
OA
OB
的夾角為120°,
OA
OC
的夾角為30°,用
OA
OB
表示
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,∠CBA=120°,AD=4,對角線BD=2
3
,將其沿對角線BD折起,使平面ABD⊥平面BCD,若四面體ABCD頂點(diǎn)在同一個(gè)球面上,則該球的體積為( 。
A、
20
3
5
π
B、
160
3
5
π
C、32
3
π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+ax2(a∈R).
(1)當(dāng)a>0時(shí),求函數(shù)y=f(x)的極值;
(2)若x∈[0,1]時(shí),函數(shù)y=f(x)圖象上任意一點(diǎn)處的切線傾斜角為θ,求當(dāng)0≤θ≤
π
4
時(shí)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=-2n2+4n,數(shù)列{bn}為單調(diào)遞增的等比數(shù)列,b1b2b3=27,a1+b1=a3+b3;
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=a2n+b2n,求數(shù)列{cn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
m-1
2
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)數(shù)列{an}的各項(xiàng)是1或2,首項(xiàng)為1,且在第k個(gè)1或第(k+1)個(gè)1之間有(2k-1)個(gè)2,即1,2,1,2,2,2,1,2,2,2,2,2,1…,則前2012項(xiàng)中1的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,
π
3
)且平行于極軸的直線的坐標(biāo)方程為( 。
A、ρsinθ=
3
B、ρcosθ=
3
C、ρsinθ=2
D、ρcosθ=2

查看答案和解析>>

同步練習(xí)冊答案