如圖,已知正方體ABCD-A1B1C1D1中,E、F分別為D1C1、B1C1的中點(diǎn),AC∩BD=P,A1C1∩EF=Q,若A1C交平面DBFE于R點(diǎn),試確定R點(diǎn)的位置.

解:在正方體AC1中,連接PQ,
∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,
∴Q∈平面BDEF,即Q是平面A1C1CA與平面BDEF的公共點(diǎn),
同理,P也是平面A1C1CA與平面BDEF的公共點(diǎn).
∴平面A1C1CA∩平面BDEF=PQ.
又A1C∩平面BDEF=R,
∴R∈A1C,
∴R∈平面A1C1CA,
R∈平面BDEF.
∴R是A1C與PQ的交點(diǎn).如圖.
分析:在正方體AC1中,連接PQ,說明Q是平面A1C1CA與平面BDEF的公共點(diǎn),P也是平面A1C1CA與平面BDEF的公共點(diǎn);說明R∈平面BDEF,判定R是A1C與PQ的交點(diǎn).
點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,考查作圖能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、如圖,已知正方體ABCD-A1B1C1D1的棱長為3,點(diǎn)E,F(xiàn)在線段AB上,點(diǎn)M在線段B1C1上,點(diǎn)N在線段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中點(diǎn),則四面體MNEF的體積( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)E為棱AB的中點(diǎn).
求:
(1)D1E與平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,E、F分別是D1C、AB的中點(diǎn).
(I)求證:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)P,Q,R分別是棱AB,CC1,D1A1的中點(diǎn).
(1)求證:B1D⊥平面PQR;
(2)設(shè)二面角B1-PR-Q的大小為θ,求|cosθ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶山區(qū)一模)如圖,已知正方體ABCD-A1B1C1D1 的棱長為2,E,F(xiàn)分別是BB1,CD的中點(diǎn).
(1)求三棱錐E-AA1F的體積;
(2)求異面直線EF與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案