精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1,求證:AB=AC.
分析:由棱柱ABC-A1B1C1為直三棱柱可得線面垂直和線線平行關(guān)系,然后取BC的中點(diǎn)F,連接AF,EF,通過證明AF⊥BC可得△ABC為等腰三角形,即AB=AC.
解答:證明:取BC中點(diǎn)F,連接EF,則EF
.
1
2
B1B,從而EF
.
DA
連接AF,則ADEF為平行四邊形,從而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,
從而AF⊥BC,即AF為BC的垂直平分線,所以AB=AC.
點(diǎn)評(píng):本題考查了棱柱的結(jié)構(gòu)特征,線面垂直的判定定理和性質(zhì)定理,綜合地考查了學(xué)生的解決問題的能力,是個(gè)中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對(duì)角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
(Ⅰ)求線段MN的長(zhǎng);
(Ⅱ)求證:MN∥平面ABB1A1;
(Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊(cè)答案