定義在(-1,1)上的函數(shù)f(x)滿足①對(duì)任意x、y∈(-1,1),都有f(x)+f(y)=f();②當(dāng)x∈(-1,0)時(shí),有f(x)>0.
求證:.
證明略
對(duì)f(x)+f(y)=f()中的x,y,令x=y=0,得f(0)=0,
再令y=-x,又得f(x)+f(-x)=f(0)=0,即f(-x)=-f(x),
∴f(x)在x∈(-1,1)上是奇函數(shù).
設(shè)-1<x1<x2<0,則f(x1)-f(x2)=f(x1)+f(-x2)=f(),
∵-1<x1<x2<0,∴x1-x2<0,1-x1x2>0 ∴<0,
于是由②知f()?>0,
從而f(x1)-f(x2)>0,即f(x1)>f(x2),
故f(x)在x∈(-1,0)上是單調(diào)遞減函數(shù).
根據(jù)奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),知
f(x)在x∈(0,1)上仍是遞減函數(shù),且f(x)<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
4x |
a |
2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
1 |
4x |
a |
2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省宣城市涇縣中學(xué)高一(上)12月段考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com