解答:
解:(Ⅰ)f′(x)=(2ax-2)•e
x+(x
2-2x+1)•e
x=(ax
2+2ax+x)e
x=[x(ax+2a+1)]e
x,
令f′(x)=0,得x=0,或x=-
=-2-
,
①若a=-
,f′(x)=-
x
2e
x≤0,函數(shù)f(x)在R上單調(diào)遞減,
②若a<-
,當(dāng)x∈(-∞,-2-
)和(0,+∞)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)x∈(-2-
,0)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
綜上所述,當(dāng)a=-
,函數(shù)f(x)在R上單調(diào)遞減,
當(dāng)a<-
,函數(shù)f(x)在x∈(-∞,-2-
)和(0,+∞)時,函數(shù)f(x)單調(diào)遞減,在(-2-
,0)時,函數(shù)f(x)單調(diào)遞增;
(Ⅱ)當(dāng)a=-1時,
∴f′(x)=-x(x+1)e
x,
∴函數(shù)f(x)在(-1,0)上單調(diào)遞增,在(-∞,-1)上單調(diào)遞減,
∴f(x)在x=-1處取得最小值,最小值為f(-1)=-
,
設(shè)g(x)=
x
3+
x
2+m,
則g′(x)=x
2+x,
當(dāng)x<-1時,g′(x)>0,當(dāng)-1<x<0時,g′(x)<0,
∴g(x)在(-∞,-1)上單調(diào)遞增,在(-1,0)上單調(diào)遞增,
故g(x)在x=-1時取得最大值,最大值為g(-1)=
+m,
由題意可知
->+m,
∴m<-
-故實(shí)數(shù)m的取值范圍為(-∞,-
-)