【題目】已知拋物線,其焦點(diǎn)為,直線過點(diǎn)與交于、兩點(diǎn),當(dāng)的斜率為時,.
(1)求的值;
(2)在軸上是否存在一點(diǎn)滿足(點(diǎn)為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)2;(2)存在,.
【解析】
(1)設(shè),,聯(lián)立直線與拋物線的方程可得到,進(jìn)而表示出,即可求出
(2)設(shè)直線的方程為,聯(lián)立直線與拋物線方程可得到,,然后條件可轉(zhuǎn)化為,即,運(yùn)用此式可得到
(1),當(dāng)直線的斜率為時,其方程為,
設(shè),,由,得,
把代入拋物線方程得,
所以,所以,
所以.
(2)由(1)可知,拋物線,,
由題意可知,直線的斜率存在,
設(shè)其方程為,將其代入拋物線方程為,
則,,
假設(shè)在軸上存在一點(diǎn)滿足,
則,即,
即,
所以,即,
由于,所以,即,
即在軸上存在點(diǎn)滿足.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù),直線l:y=kx(k>0),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|OA||OB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機(jī)購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關(guān)于x的回歸方程,并預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.
附:若隨機(jī)變量,則;
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,M是AB的中點(diǎn),N是CE的中點(diǎn).
(1)求證:;
(2)求證:平面ADE;
(3)求點(diǎn)A到平面BCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批用于手電筒的電池,每節(jié)電池的壽命服從正態(tài)分布(壽命單位:小時).考慮到生產(chǎn)成本,電池使用壽命在內(nèi)是合格產(chǎn)品.
(1)求一節(jié)電池是合格產(chǎn)品的概率(結(jié)果四舍五入,保留一位小數(shù));
(2)根據(jù)(1)中的數(shù)據(jù)結(jié)果,若質(zhì)檢部門檢查4節(jié)電池,記抽查電池合格的數(shù)量為,求隨機(jī)變量的分布列、數(shù)學(xué)期望及方差.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸入的m=1,則輸出數(shù)據(jù)的總個數(shù)為( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形和矩形所在平面垂直,其中為棱的中點(diǎn),為的中點(diǎn).
(1)求證:;
(2)若點(diǎn)到平面的距離是,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國在歐洲的某孔子學(xué)院為了讓更多的人了解中國傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場由當(dāng)?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機(jī)抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進(jìn)行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[50,60)內(nèi)的頻數(shù)為3.
(1)求的值和估計參賽人員的平均成績(保留小數(shù)點(diǎn)后兩位有效數(shù)字);
(2)已知抽取的名參賽人員中,成績在[80,90)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績在[80,90)和[90,100]的抽取的人員中各隨機(jī)抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知拋物線上一點(diǎn)到焦點(diǎn)的距離為6,點(diǎn)為其準(zhǔn)線上的任意一點(diǎn),過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為.
(1)求拋物線的方程;
(2)當(dāng)點(diǎn)在軸上時,證明:為等腰直角三角形.
(3)證明:為直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com