2012年10月莫言獲得諾貝爾文學獎后,其家鄉(xiāng)山東高密政府準備投資6.7億元打造旅游帶,包括莫言舊居周圍的莫言文化體驗區(qū),紅高粱文化休閑區(qū),愛國主義教育基地等;為此某文化旅游公司向社會公開征集旅游帶建設方案,在收到的方案中甲、乙、丙三個方案引起了專家評委的注意,現(xiàn)已知甲、乙、丙三個方案能被選中的概率分別為,且假設各自能否被選中是無關(guān)的.
(1)求甲、乙、丙三個方案只有兩個被選中的概率;
(2)記甲、乙、丙三個方案被選中的個數(shù)為,試求的期望.

(1)
(2)

解析試題分析:解:記甲、乙、丙三個方案被選中的事件分別為,則.
(1)“只有兩個方案被選中”可分為三種情形:
①甲未被選中,乙、丙被選中,概率為.……1分
②乙未被選中,甲、丙被選中,概率為.……2分
③丙未被選中,甲、乙被選中,概率為.……3分
以上三種情況是互斥的. 因此只有兩個方案被選中的概率為:.……5分
(2)由題意可知的可能取值為0,1,2,3.……6分
;


;
由(1)知;
.……10分
.……12分
考點:獨立事件的概率的乘法公式
點評:主要是考查概率的求解,以及分布列以及數(shù)學期望的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物。根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收貨量(單位:kg)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y
51
48
45
42
頻數(shù)
 
4
 
 
 (Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市直小學為了加強管理,對全校教職工實行新的臨時事假制度:“每位教職工每月在正常的工作時間,臨時有事,可請假至多三次,每次至多一小時”.現(xiàn)對該制度實施以來50名教職工請假的次數(shù)進行調(diào)查統(tǒng)計,結(jié)果如下表所示:

請假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
(1)從該小學任選兩名教職工,用表示這兩人請假次數(shù)之和,記“函數(shù)在區(qū)間上有且只有一個零點”為事件,求事件發(fā)生的概率;
(2)從該小學任選兩名職工,用表示這兩人請假次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

山東省某示范性高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設數(shù)學、物理、化學、生物和信息技術(shù)輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座.(規(guī)定:各科達到預先設定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學科講座各天的滿座概率如下表:

 
信息技術(shù)
生物
化學
物理
數(shù)學
周一





周三





周五





 (Ⅰ)求數(shù)學輔導講座在周一、周三、周五都不滿座的概率;
。á颍┰O周三各輔導講座滿座的科目數(shù)為,求隨即變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

今年我國部分省市出現(xiàn)了人感染H7N9禽流感確診病例,各地家禽市場受其影響生意冷清.A市雖未發(fā)現(xiàn)H7N9疑似病例,但經(jīng)抽樣有20%的市民表示還會購買本地家禽.現(xiàn)將頻率視為概率,解決下列問題:
(Ⅰ)從該市市民中隨機抽取3位,求至少有一位市民還會購買本地家禽的概率;
(Ⅱ)從該市市民中隨機抽取位,若連續(xù)抽取到兩位愿意購買本地家禽的市民,或
抽取的人數(shù)達到4位,則停止抽取,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

高一(1)班參加校生物競賽學生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽人數(shù)及分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中 間的矩形的高;
(2)若要從分數(shù)在之間的學生中任選兩人進行某項研究,求至少有一人分數(shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在人壽保險業(yè)中,要重視某一年齡的投保人的死亡率,經(jīng)過隨機抽樣統(tǒng)計,得到某市一個投保人能活到75歲的概率為0.60,試問:
(1)若有3個投保人, 求能活到75歲的投保人數(shù)的分布列;
(2)3個投保人中至少有1人能活到75歲的概率.(結(jié)果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某學校有甲、乙、丙三名學生報名參加2012年高校自主招生考試,三位同學通過自主招生考試考上大學的概率分別是,且每位同學能否通過考試時相互獨立的。
(Ⅰ)求恰有一位同學通過高校自主招生考試的概率;
(Ⅱ)若沒有通過自主招生考試,還可以參加2012年6月的全國統(tǒng)一考試,且每位同學通過考試的概率均為,求這三位同學中恰好有一位同學考上大學的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

我區(qū)高三期末統(tǒng)一測試中某校的數(shù)學成績分組統(tǒng)計如下表:

分組
頻數(shù)
頻率















合計


(1)求出表中、、、的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標系中畫出頻率分布直方圖;

(2)若我區(qū)參加本次考試的學生有600人,試估計這次測試中我區(qū)成績在分以上的人數(shù);
(3)若該校教師擬從分數(shù)不超過60的學生中選取2人進行個案分析,求被選中2人分數(shù)不超過30分
的概率.

查看答案和解析>>

同步練習冊答案