已知集合M{x|x2-x>0},N={0,1,2,3},則(∁UM)∩N=( 。
A、{x|0≤x≤1}
B、{0,1}
C、{2,3}
D、{1,2,3}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出M中不等式的解集確定出M,確定出M的補(bǔ)角,求出M補(bǔ)集與N的交集即可.
解答: 解:由M中不等式變形得:x(x-1)>0,
解得:x<0或x>1,即M={x|x<0或x>1},
∴∁UM={x|0≤x≤1},
∵N={0,1,2,3},
∴(∁UM)∩N={0,1},
故選:B.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由“不超過x的最大整數(shù)”這一關(guān)系所確定的函數(shù)稱為取整函數(shù),通常記為y=[x],例如[1.2]=1,[-0.3]=-1.則函數(shù)y=2[x]+1,x∈[-1,3)的值域?yàn)?div id="z75nrdh" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
+
1-x
是(  )
A、.偶函數(shù)B、奇函數(shù)
C、即奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-1+1 (a>0且a≠1)的圖象恒過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x||x-2a|<3},B={x|x2+(2-a)x-2a>0}
(1)若a=1,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x2+4x+3,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-2x+a
2x+1
是定義域R上的奇函數(shù),其中a為實(shí)數(shù).
(1)求a的值;     
(2)證明f(x)是R上的減函數(shù);
(3)若不等式f(logm
3
4
)+f(-1)>0
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:函數(shù)y=lg(-x2+8x+20)的定義域;條件q:{x|1-m≤x≤1+m,m>0},若¬p是¬q充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),對(duì)任意x∈R,有f(x-2)=
1
2
f(x),當(dāng)x∈[0,2]時(shí),f(x)=1-(x-1)2
①若函數(shù)g(x)=lnx,則函數(shù)h(x)=f(x)-g(x)的區(qū)間(0,4]上有3個(gè)零點(diǎn);
②若函數(shù)g(x)=
f(x),0≤x≤4
|2x-1|,x<0
,函數(shù)h(x)=g(x)+ax有2個(gè)零點(diǎn),則a>0或a<-
2
3
;
③若函數(shù)h(x)=f(x)-a在區(qū)間(-2,4)有4個(gè)零點(diǎn),則a范圍是(
1
2
,1);
④若函數(shù)g(x)=
f(x)
x
-a有3個(gè)零點(diǎn),則a的范圍是(
-3+2
2
2
-5+
23
4
)∪(0,12-8
2
);
以上正確的命題有
 
(寫出所有正確的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案