數(shù)列{an}的前n項(xiàng)和記為Sn,已知an=5Sn-3(n∈N)求 limn→∞(al+a3+…+a2n-1)的值。
解:由 Sn=a1+a2+…+an知an=Sn-Sn-1(n≥2),a1=S1,---- 2分
由已知 an=5Sn-3 得an-1=5Sn-1-3. 于是an-an-1=5(Sn-Sn-1)=5an, 所以an=-(an-1/4).
由 a1=5S1-3,得 a1=3/4.
所以,數(shù)列{an}是首項(xiàng)a1=3/4,公比q=-1/4的等比數(shù)列.
由此知數(shù)列 a1,a3,a5,…,a2n-1,……是首項(xiàng)為 a1=3/4, 公比為(-1/4)2的等比數(shù)列。
所以limn→∞(a1+a3+a5+…+a2n-1)=(3/4)/[1-(-1/4)2]=4/5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
Tn |
ak |
SnTn |
Tn(1)+Tn(2)+…+Tn(n) |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
pn-q |
p |
(p-1)(p-q) |
1 |
pn |
1 |
(2n-1)(2n+1-1) |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
3 |
2 |
3 |
1 |
4 |
2 |
4 |
3 |
4 |
1 |
5 |
2 |
5 |
3 |
5 |
4 |
5 |
1 |
n |
2 |
n |
n-1 |
n |
3 |
8 |
n2+n |
4 |
5 |
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com